Ochsner Health System adopts Magseed® as standard of care for localisation of impalpable breast lesions

Magseed technology guides surgeons during a breast lumpectomy to simplify treatment and improve patient experience

Cambridge, UK and New Orleans, LA, 8th May 2017: Endomag, the cancer healthcare company, announced today that Ochsner Health System has adopted Magseed® as the standard of care for breast lesion localisation, having identified the system as simpler and more effective than alternative techniques. Magseed was chosen as the preferred alternative to wire localisation, based on clinician and patient experience, following trials comparing the benefits of this technology with radioactive seed and radar techniques.

Ochsner Health System chose to move away from traditional wire localisation, which is known to be restrictive, lengthy and an uncomfortable procedure for patients. Wire systems must be conducted on the same day as surgery and can result in delays, infection, and a higher risk of cancerous tissue being left behind.

Having explored alternative techniques, including radioactive seed localisation (RSL) and radar localisation, Ochsner Health System, which provides cancer care to around 15,000 patients per year, found Magseed to provide significant advantages for both surgeon and patient, and has chosen the technology as the Health System's preferred localisation technique for breast lesions.

While RSL provides an alternative to wire techniques and can be conducted several days ahead of surgery, setting up a program can be difficult to coordinate across multiple hospital departments. The procedure also places a heavy burden on clinicians who need to closely track the seeds to ensure radio-labeled material is recovered from the breast specimen.

Radar localisation, an alternative non-radioactive technique, uses micro-impulse radar to detect a reflector that is placed at the tumour site up to 30 days ahead of surgery. However, the reflectors are quite large in comparison with Magseed and can be damaged during placement within the lesion. Once inside the breast tissue, the reflector can be difficult to locate from all orientations and a second scanner is required to confirm that it is still working.

Dr Aimee Mackey, Breast Surgeon, Ochsner Health System, commented: “Radar localisation was eventually dismissed due to its slower, more cumbersome scanning that made it hard to locate the reflector. By contrast the Sentimag probe was much faster and its immediate feedback made it easier to scan the breast and locate Magseed.”
Magseed was identified as the most patient-centered localisation technique available, offering the precision of radioseeds without the safety and regulatory concerns associated with radioactive exposure. Magseed cannot be damaged during placement. The clarity of imaging provided by the system enables confident and efficient placement within the breast lesion, and ease of location during surgery. As a result, this technique can be performed rapidly, allowing more patients to benefit from treatment.

Dr Dana Smetherman, Section Head, Breast Imaging, Ochsner Health System, said: “Overall we found that Magseed tackles most of the technical and safety issues associated with wire localisation, radioactive seeds, and radar localisation. We believe that this is the best technology for our patients. Once they become aware that this technology is available to them, we’re certain that Ochsner Health System will be their preferred treatment provider.”

Dr Aimee Mackey added: “We are very pleased to have adopted this robust and accurate technology that will enable our department to effectively treat a greater number of patients. Magseed removes many of the complications associated with traditional wire and more fragile localisation systems, and is easier to deploy and locate. This advanced, non-radioactive technology provides reassurance for clinicians and a more comfortable experience for patients.”

ENDS

Magseed is detected with the Sentimag® probe

Photos: For high resolution images please contact lorna.cuddon@zymecommunications.com

For further information please contact:
Zyme Communications
Lorna Cuddon
Tel: +44 (0)7811 996 942
Email: lorna.cuddon@zymecommunications.com

About Endomag http://www.endomag.com
Endomag is a pioneer in the use of magnetism for minimally-invasive surgical guidance. By addressing unmet needs in availability, affordability and workflow efficiency for surgical oncology, we support our mission to improve the global standard of cancer care for everyone, everywhere.

Founded as a spin-out from the University of Houston and the University College London (UCL) in 2007, we continue to develop our unique clinical platform that uses magnetic fields to power diagnostic and therapeutic devices. The company has sales in over 30 countries worldwide and is headquartered in Cambridge, United Kingdom.
About Ochsner Health System

Ochsner Health System is Louisiana’s largest non-profit, academic, healthcare system. Driven by a mission to Serve, Heal, Lead, Educate and Innovate, coordinated clinical and hospital patient care is provided across the region by Ochsner’s 29 owned, managed and affiliated hospitals and more than 60 health centers. Ochsner is the only Louisiana hospital recognized by U.S. News & World Report as a “Best Hospital” across three specialty categories caring for patients from all 50 states and more than 80 countries worldwide each year. Ochsner employs more than 17,000 employees and over 1,000 physicians in over 90 medical specialties and subspecialties, and conducts more than 600 clinical research studies. Ochsner Health System is proud to be a tobacco-free environment. For more information, please visit ochsner.org and follow us on Twitter and Facebook.

About breast tumour localisation

Breast cancer is the most common form of cancer in women, with 1.7 million new cases of breast cancer globally every year, and is expected to double by 2030. Due to a rise in national screening programmes and an increase in public awareness, breast cancer is being diagnosed and treated at an earlier stage meaning that the tumours are smaller, less defined and harder to feel, with as many as 50% of all breast tumours impalpable at the time of diagnosis. In these cases, a technique called wire localisation is typically used by surgeons to locate the tumour.

Although widely used, wire localisation commonly causes complications. On average 1 in every 4 breast wire localisations result in cancerous tissue being left behind and requiring additional treatment because the wire has become dislodged between when it was implanted and when it was removed during surgery. Additionally, there is a risk of infection due to the wire protruding from the skin, so the placement of the wire must be done on the same day as surgery. These issues result in unnecessary anxiety for patients, delays to the surgical lists and fewer patients being treated as a consequence.

Radioseed techniques involve placement of small radio-labelled (iodine-125 or palladium-103) metal seeds within the breast lesion, enabling precise localisation of cancerous tissue up to 5 days ahead of surgery. The use of radioactive components during breast surgery is subject to strict nuclear regulatory requirements and close monitoring/tracking procedures to ensure that the seeds handled appropriately and are not lost during operations.

Radar localisation uses electromagnetic waves to detect a reflector that is placed at the tumour site up 30 days ahead of surgery. The reflector is larger than the seeds used in radioactive and magnetic techniques and requires systems in both Radiology and Surgery, however, it does not involve radioactive components.

About Magseed

Magseed is smaller than a grain of rice and can be placed into the tumour for up to 30 days, allowing the patient to return home ahead of surgery. Once implanted, the seed is not easily dislodged and patients are not restricted in movement or activity. On the day of surgery, patients aren’t subjected to a localisation procedure and can instead go straight to the OR. During surgery, the seed is detected with the Sentimag® probe to guide accurate removal of the tumour and maximising the amount of healthy tissue left behind. Unlike radioactive alternatives that involve strict regulatory oversight and complex logistics, the Magseed technique can be widely adopted by any hospital, regardless of size.